Characteristic Behavior of Human Multi-Joint Spatial Trajectory in Slalom Skiing

Author:

Li Peizhang, ,Fei Qing,Chen Zhen,Yao Xiaolan,Zhang Yijia

Abstract

The scientific analysis of the slalom training process can significantly improve the performance of athletes. In this paper, the P matrix is defined by extracting the multi-joint space coordinate trajectories of the athletes in the video to analyze the slalom training pattern. The principal component analysis was used to extract the main eigenvalues and eigenvectors of the P matrix, which were defined as the main eigenbehaviors of slalom skiing, and six main eigenbehaviors were used to achieve a similarity of 96% between the reconstructed skiing sequence and the original sequence. Similarly, the group characteristic S matrix is constructed by using the individual eigenbehaviors, and the eigenvectors of the matrix are used to define the characteristic behavior of the group to classify the hierarchical group and determine the group to which the individual belongs. Results show that this method can better identify the movement pattern of the human body’s multi-joint space trajectory in indoor or outdoor slalom skiing, and provide scientific guidance for skiing training, so that athletes can achieve better training effectiveness.

Funder

Key Technology Research and Demonstration of National Scientific Training Base Construction of China

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Greeting Gesture Classification Using Machine Learning Based on Politeness Perspective in Japan;Journal of Advanced Computational Intelligence and Intelligent Informatics;2024-03-20

2. Interpretable Multi-Channel Capsule Network for Human Motion Recognition;Electronics;2023-10-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3