Interpretable Multi-Channel Capsule Network for Human Motion Recognition

Author:

Li Peizhang1,Fei Qing1,Chen Zhen1,Liu Xiangdong1

Affiliation:

1. School of Automation, Beijing Institute of Technology, Beijing 100081, China

Abstract

Recently, capsule networks have emerged as a novel neural network architecture for human motion recognition owing to their enhanced interpretability compared to traditional deep learning networks. However, the characteristic features of human motion are often distributed across distinct spatial dimensions and existing capsule networks struggle to independently extract and combine features across multiple spatial dimensions. In this paper, we propose a new multi-channel capsule network architecture that extracts feature capsules in different spatial dimensions, generates a multi-channel capsule chain with independent routing within each channel, and culminates in the aggregation of information from capsules in different channels to activate categories. The proposed structure endows the network with the capability to independently cluster interpretable features within different channels; aggregates features across channels during classification, thereby enhancing classification accuracy and robustness; and also presents the potential for mining interpretable primitives within individual channels. Experimental comparisons with several existing capsule network structures demonstrate the superior performance of the proposed architecture. Furthermore, in contrast to previous studies that vaguely discussed the interpretability of capsule networks, we include additional visual experiments that illustrate the interpretability of the proposed network structure in practical scenarios.

Funder

Key Technology Research and Demonstration of National Scientific Training Base Construction of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3