Evaluation of Kinematic and Compliance Calibration of Serial Articulated Industrial Manipulators

Author:

Ibaraki Soichi,Theissen Nikolas Alexander,Archenti Andreas,Alam Md. Moktadir, ,

Abstract

As long as industrial robots are programmed by teach programming, their positioning accuracy is unimportant. With a wider implementation of offline programming and new applications such as machining, ensuring a higher positioning accuracy of industrial robots over the entire working space has become very important. In this paper, we first review the measurement schemes of end effector poses. We then outline kinematic models of serial articulated industrial manipulators to quantify the positioning accuracy with a focus on the extension of the classical Denavit-Hartenberg (DH) models to include rotary axis error motions. Subsequently, we expand the discussion on kinematic models to compliant robot models. The review highlights compliance models that are applied to calculate the elastic deformation produced by forces, namely gravity and external loads. Model-based numerical compensation plays an important role in machine tool control. This paper aims to present state-of-the-art technical issues and future research directions for the implementation of model-based numerical compensation schemes for industrial robots.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference139 articles.

1. S. L. Albright and R. Bernhardt, “Robot calibration,” 1st edition, Chapman & Hall, 1993.

2. International Organization for Standardization, “ISO 8373:2012 Robots and robotic devices – Vocabulary,” 2012.

3. Joint Committee for Guides in Metrology, “International vocabulary of metrology – Basic and general concepts and associated terms (VIM),” 2012.

4. B. Mooring, Z. S. Roth, and M. R. Driels, “Fundamentals of manipulator calibration,” 1991.

5. Z. Pan, J. Polden, N. Larkin, S. van Duin, and J. Norrish, “Recent progress on programming methods for industrial robots,” Robotics and Computer-Integrated Manufacturing, Vol.28, No.2, pp. 87-94, 2012.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3