Formation Mechanism of Pores Inside Structure Fabricated by Metal-Based Additive Manufacturing

Author:

Egashira Kyota,Furumoto Tatsuaki,Hishida Kiichi,Abe Satoshi,Koyano Tomohiro,Hashimoto Yohei,Hosokawa Akira, , ,

Abstract

The powder bed fusion (PBF) technique is a metal-based additive manufacturing (AM) method in which metal powder is deposited on a substrate and melted by selective laser-beam irradiation. Given that the process and parameters of metal-based AM are complicated, there are various problems in high-precision fabrication. One of these is that although metal-based AM can be used for fabrication of high-density parts, pores can easily form inside the fabricated structure owing to process instabilities. Pore formation degrades the mechanical strength of the fabricated structure. Therefore, this study investigated the pore formation mechanism inside a structure fabricated by PBF. Pore suppression by controlling the substrate temperature was also evaluated. Small- and large-sized pores with diameters of 10 μm and more than 50 μm, respectively, were found. Furthermore, differences in pore formation in the cross-section of the fabricated structure were observed owing to a variation in the volume-specific energy density and substrate temperature. At a substrate temperature of 25°C, the number of pores decreased more at the upper position than at the lower position owing to repeated melting and solidification under the laser-beam irradiation. At a substrate temperature of 200°C, the number of pores decreased significantly more than at 25°C. Furthermore, as the substrate temperature increased, the wettability of the molten metal improved, resulting in smaller contact angles of the fabricated structure in the single-line track. In PBF, multiple lines are fabricated in each layer. At low substrate temperatures, interstices were formed between the lines owing to the low wettability of the molten metal. These interstices acted as the origins of pores when the next layer was fabricated. Heating the substrate made the surface of the structure smooth owing to the high wettability of the molten metal and a reduction in the number of pores. Therefore, the formation of large pores could be reduced by controlling the substrate temperature.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference20 articles.

1. H. Kodama, “Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer,” Review of Scientific Instruments, Vol.52, Issue 11, pp. 1770-1773, 1981.

2. C. W. Hull, “Apparatus for production of three-dimensional objects by stereolithography,” U.S. Patent No.4,575,330, 1986.

3. H. Kyogoku, “Research Trend and Application of Additive Manufacturing,” J. of Smart Processing, Vol.3, No.3, pp. 148-151, 2014 (in Japanese).

4. ASTM, ASTM F2792-10e1, “Standard terminology for additive manufacturing technologies,” Annual Book of ASTM Standard, pp. 671-673, 2012.

5. J. M. Flynn, A. Shokrani, S. T. Newman, and V. Dhokia, “Hybrid additive and subtractive machine tools, Research and industrial developments,” Int. J. of Machine Tools and Manufacture, Vol.101, pp. 79-101, 2016.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3