Advantages of Injection Mold with Hybrid Process of Metal Powder Bed Fusion and Subtractive Process

Author:

Abe Satoshi1,Uemoto Seiichi2,Morimoto Masanori2

Affiliation:

1. Panasonic Holdings Corporation, Manufacturing Innovation Division, 2-7 Matsuba-cho, Kadoma-shi, Osaka 571-8502, Japan

2. Panasonic Corporation, Electric Works Company, Kadoma, Japan

Abstract

This paper focuses on the hybrid process combining metal additive manufacturing (AM) and subtractive processing developed for application to injection molds. The basic concept is a combination of laser powder bed fusion of metal powder and subtractive processing. This process is characterized by alternating buildup and milling processes. Even the inner surface of deep grooves, which conventionally required electrical discharge machining, can be machined with small-diameter tools with a short flute length. Therefore, molds with complex shapes that previously required electrical discharge machining can be manufactured in a single process. Moreover, a dimensional accuracy and surface roughness of levels equal to those achieved by machining with the machining center can be ensured. In the hybrid process, it is necessary to minimize the surplus solidified area (which is the area milled by the small-diameter tool). Therefore, the formation mechanism of the surplus solidified region is verified. It is shown that the power distribution of the laser beam significantly affects the size (width and depth) and density distribution of the excessively solidified region. In addition, the effective value of metal AM mold is introduced. The 3D cooling circuit improves the efficiency of the injection molding process. If the temperature balance between the cavity side and core side is achieved, the distortion of the molded product would be suppressed. If the cooling effect is promoted, the molding cycle would be shortened substantially. Second, the effect of the gas vent function by a permeable structure is explained through actual examples. The effect of the gas vent function by the permeable structure is explained. It is indicated that stable molding can be achieved. In addition, the appearance defects of molded products can be reduced when the air inside the cavity is exhausted sufficiently from the mold through the permeable structure.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference27 articles.

1. C. R. Deckard, “Selective laser sintering,” The University of Texas at Austin ProQuest Dissertations Publishing, 1988.

2. C. Wilkening, “Fast Production of Technical Prototypes Using Direct Laser Sintering of Metals and Foundry Sand,” Int. Solid Freeform Fabrication Symp., 1996.

3. O. Nyrhila, J. Kotila, J.-E. Lind, and T. Syvanen, “Industrial Use of Direct Metal Laser Sintering,” Int. Solid Freeform Fabrication Symp., 1998. http://dx.doi.org/10.26153/tsw/637

4. C. Hauser, T. H. C. Childs, and K. W. Dalgamo, “Selective Laser Sintering of Stainless Steel 314S HC Processed Using Room Temperature Powder Beds,” Int. Solid Freeform Fabrication Symp., 1999. http://dx.doi.org/10.26153/tsw/748

5. B. Blakey-Milner, P. Gradl, G. Snedden, M. Brooks, and J. Pitot, “Metal additive manufacturing in aerospace: A review,” Materials & Design, Vol.209, 110008, 2021. https://doi.org/10.1016/j.matdes.2021.110008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3