Author:
Yan Jiwang, ,Zhang Zhiyu,Kuriyagawa Tsunemoto
Abstract
Lubrication is a key issue in diamond turning of hard materials. This paper explores the feasibility of nanoparticle lubrication in diamond turning of reaction-bonded SiC. Four types of nanoparticles were dispersed in lubricating grease and applied to a workpiece surface. Results showed that the type and concentration of dispersed nanoparticles significantly affected lubricating performance. Grease containing 10% Cu nanoparticles produced the highest surface quality and the lowest tool wear. Lubrication is discussed in terms of nanoparticle-induced solid lubricating film formation at the tool-workpiece interface.
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference11 articles.
1. C. Hall, M. Tricard, H. Murakoshi, Y. Yamamoto, K. Kuriyama, and H. Yoko, “New mold manufacturing techniques,” Proceedings of the SPIE, 5868, 58680V, 2005.
2. H. Toshiya, I. Ichiro, and S. Junichi, “Grinding of silicon carbide with diamond wheel, Transactions of the Japan Society of Mechanical Engineers,” C, 51, pp. 1864-1870, 1985.
3. Y. Tam, B. Cheng, and W.Wang, “Removal rate and surface roughness in the lapping and polishing of RB-SiC optical components,” Journal of Materials Processing Technology, 192-193, pp. 276-280, 2007.
4. J. Yan, Z. Zhang, and T. Kuriyagawa, “Mechanism for material removal in diamond turning of reaction-bonded silicon carbide,” International Journal of Machine Tools and Manufacture, Vol.49, No.5, pp. 366-374, 2009.
5. Z. Zhang, J. Yan, and T. Kuriyagawa, “Wear mechanism of diamond tools in ductile machining of reaction-bonded silicon carbide,” Proceedings of the 5th International Conference on Leading Edge Manufacturing in 21st Century, pp. 425-430, 2009.
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献