Design and Analysis of a Thin Film Permanent Magnet Actuated Micro Pump

Author:

Zhi Chao, ,Shinshi Tadahiko,Uehara Minoru,

Abstract

In this paper we present the design, analysis and an experimental evaluation of a micro pump utilizing a 20 µm thick, 3 mm diameter Thin Film Permanent Magnet (TFPM). The pump includes an electromagnet that uses a magnetic closed circuit. The design of the electromagnet was optimized and was theoretically explained. A PolyDiMethylSiloxane (PDMS) diaphragm with a thickness of approximately 80 µm was used in the pump. The electromagnetic force on the diaphragmwas calculated using a finite elementmethod. Large deformation analysis was used to calculate the displacement of the diaphragm. The force and displacement measurements agreed well with those calculated by simulation. The performance of the fabricated pump was also evaluated. During pumping, the displacement of the diaphragm reached 500 µm, which is the same as the height of the chamber. Furthermore, because of the large displacement, the pump is bubble tolerant and self-priming. A maximum flow rate of 50 µL/min and a maximum pressure of 110 Pa were achieved. A square wave input signal was demonstrated to be more effective than a sinusoidal signal in generating a high flow rate.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3