Influencing Factors on Rotate Vector Reducer Dynamic Transmission Error

Author:

Jin Shou-Song, ,Tong Xiao-Tao,Wang Ya-Liang

Abstract

The factors influencing rotate vector (RV) reducer dynamic transmission error were studied using virtual prototyping technology, which contained the elastic deformation, working load, part manufacturing error, and assembly clearance. According to the error transmission relationship of the RV reducer, 15 influencing factors were selected to design an orthogonal simulation test. The virtual prototype of the RV reducer was built using CREO and ANSYS, and imported into ADAMS for multi-body dynamics simulation. The simulation method reliability was verified via experiments. The results show that the circle center radius error of the pin gear, the amount of equidistant modification of the cycloid gear, the amount of radial-moving modification of the cycloid gear, the clearance between the support bushing and planet carrier, and the clearance between the crankshaft and the support bushing were positively correlated with the RV reducer dynamic transmission error. Among these, the circle center radius error of the pin gear has the greatest influence on the dynamic transmission error of the RV reducer followed by the amount of equidistant modification of the cycloid gear. The elastic deformation of the part and the load fluctuation show a certain gain effect on the transmission error, the elastic deformation of the cycloid gear has a great influence, and the elastic deformation of the pin gear has the least.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference21 articles.

1. J. G. Blanche and D. C. H. Yang, “Cycloid Drives with Machining Tolerances,” J. of Mechanisms Transmissions and Automation in Design, Vol.111, No.3, pp. 337-344, 1989.

2. D. C. H. Yang and J. G. Blanche, “Design and application guidelines for cycloid drives with machining tolerances,” Mechanism and Machine Theory, Vol.25, No.5, pp. 487-501, 1990.

3. T. Hidaka, H. Y. Wang, T. Ishida, K. Matsumoto, and M. Hashimoto, “Rotational transmission error of K-H-V planetary gears with cycloid gear: first report, analytical method of the rotational transmission error,” Trans. of the Japan Society of Mechanical Engineers C, Vol.60, No.570, pp. 645-653, 1994.

4. T. Ishida, H. Y. Wang, T. Hidaka, and M. Hashimoto, “Rotational transmission error of k-h-v-type planetary gears with cycloid gears: second report, effects of manufacturing and assembly errors on rotational transmission error,” Trans. of the Japan Society of Mechanical Engineers C, Vol.60, No.578, pp. 3510-3517, 1994.

5. L. S. Han, Y. W. Shen, and H. J. Dong, “Research on Dynamic Transmission Error for 2K-V-type Drive based on Non-linear Dynamics,” China Mechanical Engineering, Vol.18, No.9, pp. 1039-1042, 2007.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3