Dynamic Modeling and Analysis of an RV Reducer Considering Tooth Profile Modifications and Errors

Author:

Li Xuan1ORCID,Huang Jiaqing1,Ding Chuancang2,Guo Ran1,Niu Weilong2

Affiliation:

1. School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215137, China

2. School of Rail Transportation, Soochow University, Suzhou 215137, China

Abstract

Due to their advantages of compact size, high reduction ratio, large stiffness and high load capacity, RV reducers have been widely used in industrial robots. The dynamic characteristics of RV reducers in terms of vibratory response and dynamic transmission error have a significant influence on positioning accuracy and service life. However, the current dynamic studies on RV reducers are not extensive and require deeper study. To bridge this gap, a more effective and realistic lumped parameter dynamic model for RV reducers is developed, considering the tooth profile modification of cycloid gears and system errors. Firstly, for an efficient solution, the equivalent pressure angle and equivalent mesh stiffness of the cycloid–pin gear pair are introduced in the dynamic model based on the loaded tooth contact analysis. Secondly, the differential equations of the system are derived by analyzing the relative displacement relationships between each component, which are solved using the Runge–Kutta method. With this, the effects of errors such as machining errors, assembly errors and bearing clearances on the dynamic behaviors and transmission precision are investigated by comparison to quantify or qualify their influence. This research is helpful in characterizing the multi-tooth mesh and dynamic behavior, and revealing the underlying physics of the RV reducer.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3