Scrap Float Detection in a Blanking Die Set with Multiple Retrofit Accelerometers Using the Mahalanobis–Taguchi System

Author:

Ohashi Takahiro1ORCID

Affiliation:

1. School of Science and Engineering, Kokushikan University, 4-28-1 Setagaya, Setagaya-ku, Tokyo 154-8515, Japan

Abstract

Detection of scrap floating for a stamping die with 0.8 mm-thick A1050 aluminum sheets was conducted with multiple retrofit accelerometers attached to the outside of the stamping die-set. The accelerometers were attached to three locations on the side of the stripper plate and one location on the side of the punch plate of a 3-ϕ30 hole blanking die using a magnet-based jig. Anomaly detection technique using the Mahalanobis–Taguchi system was conducted with the gravity analysis of the waveform of the accelerometers’ signal. A total of 106 experiments without foreign objects (i.e., a scrap) were conducted to collect instances of the signal profile for the normal samples. In addition, 24 error samples with a foreign object were fabricated for anomaly detection tests. Only one of the four locations achieved 100% accuracy in detection using only one sensor. In detection using only one sensor, only one of the four locations achieved 100% accuracy. We attempted to improve the accuracy by increasing the amount of learning. However, the accuracy did not improve by increasing the amount of training except for the one sensor mentioned above. This result implies that machine learning, in which features are predefined by the user, cannot compensate for the disadvantage of sensor location by the amount of training. Then, combinations of the sensors were examined. Learning with all features of all 4 sensors (i.e., with 12 features) resulted in a still imperfect separation between normal and error samples. However, even if a single sensor causes false positives, it was possible to combine the influential features of multiple sensors, that were chosen by SN ratio analysis, to detect all anomalies without false positives. In future work, we would like to consider the detection of anomalies with multi-discipline features and combine anomaly detection systems with design and quality control systems.

Publisher

Fuji Technology Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3