Investigating thresholding techniques in a real predictive maintenance scenario

Author:

Giannoulidis Apostolos1,Gounaris Anastasios1,Nikolaidis Nikodimos2,Naskos Athanasios2,Caljouw Daniel3

Affiliation:

1. Aristotle University of Thessaloniki, Greece

2. Atlantis Engineering, Thessaloniki, Greece

3. Philips Consumer Lifestyle, Netherlands

Abstract

We deal with a real predictive maintenance (PdM) scenario in an Industry 4.0 setting. With a help of the Sibyl platform, we can monitor live data from key components of a Philips factory equipment; in this work, we focus on a cold-forming press. Due to the dynamic environment of the operation of this press, unsupervised anomaly detection techniques are used to timely detect the wear, where early anomalies are interpreted as warning signs of a forthcoming failure. Typically such techniques assign an anomaly score, and the problem we face is how to appropriately set a threshold for this score. We introduce and compare four generally applicable thresholding techniques, two of which are dynamic, i.e., they continuously refine the threshold during the episode lifetime. We discuss the properties of these techniques and quantitatively evaluate their behavior in our case study.

Publisher

Association for Computing Machinery (ACM)

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scrap Float Detection in a Blanking Die Set with Multiple Retrofit Accelerometers Using the Mahalanobis–Taguchi System;International Journal of Automation Technology;2024-07-05

2. Parameter-free Streaming Distance-based Outlier Detection;2024 IEEE 40th International Conference on Data Engineering Workshops (ICDEW);2024-05-13

3. Engineering and evaluating an unsupervised predictive maintenance solution: a cold-forming press case-study;Journal of Intelligent Manufacturing;2024-03-28

4. Predictive Maintenance in a Fleet Management System: The Navarchos Case;Lecture Notes in Business Information Processing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3