Pneumatic Servo Bearing Actuator with Multiple Bearing Pads for Ultraprecise Positioning

Author:

Tsujimura Shuhei, ,Hashimoto Yusuke,Matsuoka Takashi,Hirayama Tomoko,Sasaki Katsumi, ,

Abstract

With the increase in demand for semiconductor products, ultrafine linear patterning technologies for Large-Scale Integrations (LSIs) have been making progress. The requested positioning accuracy in such ultraprecise apparatuses is of nanometer order. To meet such specific needs, the research and development of a variety of actuators has been necessary. Our laboratory has developed a ‘Pneumatic Servo Bearing Actuator (PSBA),’ a novel actuator that uses pneumatic servo technology for ultraprecise positioning. Our past studies have showed that the minimum resolution of PSBA was almost 6 nm, even under open loop control; thus, we concluded that the PSBA was a promising actuator in advanced ultraprecise positioning systems. However, the stroke of the PSBA was comparatively short. To expand the stroke of the actuator, we proposed and developed a new PSBA with multiple thin thrust-bearing pads. The main purpose in this study is to investigate the positioning properties of the new PSBA with multiple thrust bearing pads. The obtained characteristics of the PSBA can be enumerated as follows. (1) The PSBA with multiple bearing pads achieves a longer stroke than the PSBA with a single pad. (2) The difference in the thickness of the bearing pads affects the dynamic characteristics of the actuator. (3) The minimum positioning resolution of the developed PSBA with twenty-nine bearing pads is about 2 – 4 nm with feedback control.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference13 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical Model of Digital Valve-Controlled Active Air Bearing;International Journal of Automation Technology;2019-01-05

2. Orientation Compensation of an Inchworm Stage with Optical Navigation;International Journal of Automation Technology;2018-09-05

3. Development of a Wide-Range Precision Positioning Sensor Based on Image Analysis of Diffracted Light;International Journal of Automation Technology;2015-09-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3