Integrated Control Design of Pneumatic Servo Table Considering the Dynamics of Pipelines and Servo Valve

Author:

Li Jun, ,Choi Joonmyeong,Kawashima Kenji,Fujita Toshinori,Kagawa Toshiharu,

Abstract

In this paper, integrated control design for the pneumatic servo table system considering the dynamics of pipelines and servo valve is studied. The table is mainly composed by a pneumatic actuator, a highperformance pneumatic servo valve and pipelines. The pneumatic actuator utilizes a pneumatic cylinder with air bearings. The servo valve has high dynamics up to 300 Hz and is connected to the pneumatic actuator by pipelines. The system is pneumatically driven, providing the advantages of low heat generation and non-magnetic, nature suited to precise positioning. To simulate the system, we designed a linear model considering pipelines and servo valve dynamics. Comparison results showed that with a 7thorder linear model, the discrepancy between experiment and simulation results was much smaller than when using a 3rdorder model. The model’s complexity made it necessary to reduce the model’s order. Two poles are much further from the imaginary axis compared with other five poles in the pole loci of the 7thorder model, so the model is reduced to a 5thorder. A comparison of simulation and experiment results showed that the 5thorder model matches the real system well.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pneumatically Driven Ophthalmologic Surgery Robot with Intraocular Pressure Control;2023 32nd IEEE International Conference on Robot and Human Interactive Communication (RO-MAN);2023-08-28

2. Development of a Poppet-Type Pneumatic Servo Valve;Applied Sciences;2018-10-31

3. Practical and intuitive controller design method for precision positioning of a pneumatic cylinder actuator stage;Precision Engineering;2014-10

4. Control design of a pneumatic cylinder with distributed model of pipelines;Precision Engineering;2013-10

5. Trajectory Control of Pneumatic Servo Table with Air Bearing;International Journal of Automation Technology;2011-11-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3