Affiliation:
1. Mechanical Engineering Department, School of Engineering, University of California, Irvine, Calif. 92717
Abstract
Pneumatic actuators are capable of providing high power output levels at a relatively low cost. In addition, they are clean, lightweight, and can be easily serviced. The difficulty of achieving a high-bandwidth, stable, pneumatic control system has limited its use in robotic position control applications. For open-loop control applications, such as many robot grippers, pneumatic actuators are often used. In this paper, direct-drive pneumatic servo-actuators are examined for their potential use in robotic applications. A complete mathematical model of the actuator is derived, and several control algorithms are tested numerically and experimentally. Our analysis shows that pneumatic systems are practical for use in servo-control applications. The main limitation is that of the system response time, which is determined by the valve flow characteristics and supply pressure. Large output forces can be obtained and accurately controlled with the servo-valve and differential pressure transducer used in the experiments.
Subject
Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering
Cited by
92 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献