Square Layout Four-Point Method for Two-Dimensional Profile Measurement and Self-Calibration Method of Zero-Adjustment Error

Author:

Shimizu Hiroki, ,Yamashita Ryousuke,Hashiguchi Takuya,Miyata Tasuku,Tamaru Yuuma

Abstract

An on-machine measurement method, called the square-layout four-point (SLFP) method with angle compensation, for evaluating two-dimensional (2-D) profiles of flat machined surfaces is proposed. In this method, four displacement sensors are arranged in a square and mounted to the scanning table of a 2-D stage. For measuring the 2-D profile of a target plane, height data corresponding to all measuring points are acquired by means of the raster scanning motion. At the same time, pitching data of the first primary scan line and rolling data of the first subsidiary scan line are monitored by means of two auto-collimators to compensate for major profile errors that arise out of the posture error. Use of the SLFP method facilitates connection of the results of straightness-measurements results obtained for each scanning line by using two additional sensors and rolling data of the first subsidiary scan line. Specifically, the height of a measuring point is calculated by means of a recurrence equation using three predetermined height data for adjacent points in conjunction with data acquired by the four displacement sensors. Results of the numerical simulation performed in this study demonstrate higher efficiency of the SLFP method with angle compensation. During actual measurement, however, it is difficult to perfectly align inline the origin height of each displacement sensor. With regard to the SLFP method, zero-adjustment error is defined as the relative height of a sensor’s origin with respect to the plane comprising origins of the other three sensors. This error accumulates in proportion to number of times the recurrence equation is applied. Simulation results containing the zero-adjustment error demonstrate that accumulation of the said error results in unignorable distortion of measurement results. Therefore, a new self-calibration method for the zero-adjustment error has been proposed. During 2-D profile measurement, two different calculation paths – the raster scan path and orthogonal path – can be used to determine the height of a measurement point. Although heights determined through use of the two paths must ideally be equal, they are observed to be different because accumulated zero-adjustment errors for the two paths are different. In view of this result, the zero-adjustment error can be calculated backwards and calibrated. Validity of the calibration method has been confirmed via simulations and experiments.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3