Fabrication of Poly-Pyrrole Membrane Actuator for Cell Stimulation

Author:

Kawaguchi Kodai, ,Fujita Yuto,Kato Kenta,Kaneko Arata

Abstract

Micro-actuators are used for mechanical stimulation of cultured cells in regenerative medicine and are critical components of biosensors. In this study, electrochemical polymerization is utilized to fabricate a film of poly-pyrrole (PPy) with a thickness of 10 μm. This film is peeled off from a working electrode substrate and subsequently laminated with a polydimethylsiloxane (PDMS) membrane containing holes of diameter of 5 mm. The assembled PPy film forms a membrane of PPy that can be used as a micro-actuator. This membrane is deflected upward via the application of voltages of −0.2, −0.4, −0.6, −0.8, and −1.0 V for 120 s in either NaDBS solution or cell culture solution. The primary response was an expansion in the in-plane direction with the absorption of ions in the electrolyte solution. The deflection increases with the duration of the applied voltage. Moreover, the maximum deflection that increases with the applied voltage reaches 540 μm at −1.0 V in the NaDBS solution. In the cell culture solution, the maximum deflection is approximately 400 μm for an applied voltage of −1.0 V. When the PPy membrane actuator was used in the culture solution, the time constant was 20 s to reach 63.2% of the maximum deflection. During operation, a voltage with a rectangular form and a period of 40 s was periodically applied. The operation of the PPy membrane actuator was repeated 90 times or more, although the deflection of the membrane had slight attenuation during the cycle of applied voltage. The PPy membrane exhibited adequate adhesiveness for cultured C2C12 cells. They adhered to the PPy surface and stretching of their pseudopods was observed. These cells are additionally cultured on the PPy membrane actuator. When a voltage is applied, the membrane actuator is operable while supporting cultured C2C12 cells. These cells are mechanically and electrically stimulated on the membrane that functions as a cell stimulation device.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3