Textured Surface of Self-Assembled Particles as a Scaffold for Selective Cell Adhesion and Growth
-
Published:2016-01-04
Issue:1
Volume:10
Page:62-68
-
ISSN:1883-8022
-
Container-title:International Journal of Automation Technology
-
language:en
-
Short-container-title:IJAT
Author:
Kaneko Arata, ,Takeda Iwori
Abstract
SiO2particles (φ 1 μm) self-assemble into hexagonal arrangements on a glass substrate. Dip-coating is also used to produce linear patterns of particles several tens of micrometers in width on substrates patterned with octadecyltrichlorosilane (OTS). Some particles are coated with specific proteins via electrochemical adsorption and structured on a glass substrate. The upper surfaces of self-assembled particles have specifically-ordered asperities that can be called textures. These textured surfaces are applied to a cell scaffold. PC12 and HeLa cells adhere to the textured surfaces of particles more often than they adhere to flat (smooth) surfaces. The cells are located on approximately 50-μm-width of self-assembled particles. Thus, it is found that the textured surface of particles functions as a template for autonomous cell patterning. An in-situ observation shows that the selective adhesion of cells is achieved by their extensions and migrations from the flat region to the particles. Coating particles with proteins enhances cell adhesiveness in such a way that isolated cells adhere to the linear patterns of particles in straight lines. The textured surfaces of particles also affect cell growth. As cell growth is restricted on the textured surfaces of particles, a confluent state of aggregated cells is achieved on only a linear pattern of particles.
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference20 articles.
1. Z. L. Zhang, T. Asano, H. Uno, R. Tero, M. Suzui, S. Nakao, T. Kaito, K. Shibasaki, M. Tominaga, Y. Utsumi, Y. L. Gao, and T. Urisu, “Fabrication of Si-based planar type patch clamp biosensor using silicon on insulator substrate,” Thin Solid Films, Vol.516, pp. 2813-2815, 2008. 2. M. Xue, S. Guo, X. S. Zhao, and T. Cao, “Fabrication of ultrafine protein arrays on easy-fabricated metallic nanostructures,” Scripta Materials, Vol.58, pp. 854-857, 2008. 3. C. H. Jang, M. L. Tingey, N. L. Korpi, G. J. Wiepz, J. H. Schiller, P. J. Bertics, and N. L. Abbott, “Using Liquid Crystals to Report Membrane Proteins Captured by Affinity Microcontact Printing from Cell Lysates and Membrane Extracts,” J. Am. Chem. Soc., Vol.127, No.25, pp. 8912-8913, 2005. 4. D. Kleinfeld, K. H. Kahler, and P. E. Hockberger, “Controlled outgrowth of dissociated neurons on patterned substrates,” J. Neurosci., Vol.8, pp. 4098-4120, 1988. 5. A. Ranella, M. Barberoglou, S. Bakogianni, C. Fotakis, and E. Stratakis, “Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures,” Acta Biomater., Vol.6, pp. 2711-2720, 2010.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|