Microstructure and Mechanical Properties of AlSi12CuNi Alloy Fabricated by Laser Powder Bed Fusion Process
-
Published:2021-07-05
Issue:4
Volume:15
Page:388-395
-
ISSN:1883-8022
-
Container-title:International Journal of Automation Technology
-
language:en
-
Short-container-title:IJAT
Author:
Hirayama Akihiro,Kimura Masaaki,Kusaka Masahiro,Kaizu Koichi, ,
Abstract
The microstructure and mechanical properties of the AlSi12CuNi alloy fabricated by the additive manufacturing technique, laser powder bed fusion (L-PBF), were investigated. Several laser irradiation conditions were examined to optimize the manufacturing process to obtain a high volume density of the fabricated alloy. Good fabricated samples with a relative density of 99% or higher were obtained with no cracks. The fabricated samples exhibited significantly good mechanical properties, such as ultimate tensile strength, breaking elongation, and micro-hardness, compared to the conventional die casting AlSi12CuNi alloy. Fine microstructures consisting of the α-Al phase and a nano-sized eutectic Al-Si network were observed. The dimensions of the microstructures were smaller than those of the conventional die-casting AlSi12CuNi alloy. The superior mechanical properties were attributed to the microstructure associated with the rapid solidification in the L-PBF process. Furthermore, the influence of the building direction on the mechanical properties of the fabricated samples was evaluated. The ultimate tensile strength and breaking elongation were significantly affected by the building direction; mechanical properties parallel to the roller moving direction were significantly better than those perpendicular to the roller moving direction. In conclusion, AlSi12CuNi alloys with good characteristics were successfully fabricated by the L-PBF process.
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference41 articles.
1. F. Calignano, D. Manfredi, E. P. Ambrosio, S. Biamino, M. Lombardi, E. Atzeni, A. Salmi, P. Minetola, L. Iuliano, and P. Fino, “Overview on Additive Manufacturing Technologies,” Proc. of the IEEE, Vol.105, No.4, pp. 593-612, 2017. 2. K. Egashira, T, Furumoto, K. Hishida, S. Abe, T. Koyano, and Y. Hashimoto, “Mechanism of Pores Inside Structure Fabricated by Metal-Based Additive Manufacturing,” Int. J. Automation Technol., Vol.13, No.3, pp. 330-337, 2019. 3. Y. Koizumi, A. Chiba, N. Nomura, and T. Nakano, “Fundamentals of Metal 3D Printing Technologies,” Materia Japan, Vol.56, No.12, pp. 686-690, 2017 (in Japanese). 4. N. Read, W. Wang, K. Essa, and M. M. Attallah, “Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development,” Mater. Des., Vol.65, pp. 417-424. 2015. 5. J. Suryawanshi, K. G. Prashanth, S. Scudino, J. Eckert, O. Prakash, and U. Ramamurty, “Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting,” Acta Mater., Vol.115, pp. 285-294, 2016.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|