Affiliation:
1. Politeknik Negeri Semarang, Jl. Prof. Sudarto, Tembalang, Kec. Tembalang, Semarang, Central Java 50275, Indonesia
Abstract
Internet of Things (IoT) is developing rapidly with wider application fields. IoT’s main infrastructure is called a wireless sensor network (WSN). Hence, WSN must be able to operate on various network models. Multi-hop clustering is considered a solution for adapting to various network sizes. Multi-hop clustering must be designed to maintain the balance of energy consumption between nodes, and many algorithms have been proposed for this purpose. However, most clustering algorithms are designed with the assumption that the network is a two-dimensional plane. In many applications, WSN is more appropriately modeled as a three-dimensional (3D) network, for example, the WSN application for structural health monitoring or underwater wireless sensor networks. Here, a clustering algorithm for 3D-WSN is proposed. This algorithm is developed based on an analysis of the balance of energy consumption, such that the network lifetime is expected to be longer. The main novelty of our algorithm is the utilization of multi-hop layered transmission. From the simulation, the performance of the proposed algorithm exhibits a good energy balance compared to an un-balanced analysis.
Publisher
Fuji Technology Press Ltd.
Reference20 articles.
1. G. Weston, “IoT Connectivity Industry Forecast by 2030,” 101 Blockchains, 2023. https://101blockchains.com/iot-connectivity-industry-forecast/ [Accessed July 22, 2023]
2. X. Zhao et al., “Design and Implementation of Environmental Monitoring System Based on Multi-Protocol Fusion Internet of Things,” J. Adv. Comput. Intell. Intell. Inform., Vol.26, No.5, pp. 715-721, 2022. https://doi.org/10.20965/jaciii.2022.p0715
3. Y. Fujinawa, R. Kouda, and Y. Noda, “The Resilient Smart City (An Proposal),” J. Disaster Res., Vol.10, No.2, pp. 319-325, 2015. https://doi.org/10.20965/jdr.2015.p0319
4. J. Zhang and M. Wang, “Research on Communication Scheduling Algorithm for Smart Home in Internet of Things Under Cloud Computing,” J. Adv. Comput. Intell. Intell. Inform., Vol.23, No.1, pp. 124-128, 2019. https://doi.org/10.20965/jaciii.2019.p0124
5. S. Teruhi, Y. Yamaguchi, and J. Akahani, “Water Leakage Detection System for Underground Pipes by Using Wireless Sensors and Machine Learning,” J. Disaster Res., Vol.12, No.3, pp. 557-568, 2017. https://doi.org/10.20965/jdr.2017.p0557