Research on Communication Scheduling Algorithm for Smart Home in Internet of Things Under Cloud Computing

Author:

Zhang Jie, ,Wang Mantao

Abstract

The current communication scheduling algorithm for smart home cannot realize low latency in scheduling effect with unreasonable control of communication throughput and large energy consumption. In this paper, a communication scheduling algorithm for smart home in Internet of Things under cloud computing based on particle swarm is proposed. According to the fact that the transmission bandwidth of any data flow is limited by the bandwidth of network card of sending end and receiving end, the bandwidth limits of network card of smart home communication server are used to predict the maximum practicable bandwidth of data flow. Firstly, the initial value of communication scheduling objective function of smart home and particle swarm is set, and the objective function is taken as the fitness function of particle. Then the current optimal solution of objective function is calculated through predicted value and objective function, current position and flight speed of particle should be updated until the iteration conditions are met. Finally, the optimal solution is output, the communication scheduling of smart home is thus realized. Experiments show that this algorithm can realize low latency with small energy consumption, and the throughput is relatively reasonable.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Reference15 articles.

1. W. J. Gu, “Study of the Shared Resource Data Scheduling Method of the Internet of Things,” Computer Simulation, Vol.34, No.1, pp. 268-271, 2017.

2. J. Guo, S. Durrani, X. Zhou, and H. Yanikomeroglu, “Massive Machine Type Communication with Data Aggregation and Resource Scheduling,” IEEE Trans. on Communications, Vol.65, Issue 9, pp. 4012-4026, 2017.

3. M. H. Min, Z. J. Yang, Z. S. Li, and Z. F. Liu, “Research on Multi-slot Frame Scheduling Algorithm in Industrial IoT Applications,” Computer Engineering, Vol.42, No.11, pp. 15-21, 2016.

4. G. Yang, X. Deng, and C. Liu, “Facial expression recognition model based on deep spatiotemporal convolutional neural networks,” J. of Central South University (Science and Technology), Vol.47, No.7, pp. 2311-2319, 2016.

5. W. J. Wang, Y. Yu, X. H. Sun et al., “Modeling of Household Energy Consumption Scheduling and Its Solving with Ant Colony Algorithm,” Computer Technology and Development, Vol.27, No.2, pp. 195-199, 2017.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy Balanced Self-Organizing Networks Algorithm for Three-Dimensional Internet of Things;International Journal of Automation Technology;2024-03-05

2. Key Technologies of Data Security and Privacy Protection in the Internetof- Things Group Intelligence Perception;Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering);2023-03

3. Design and Implementation of Environmental Monitoring System Based on Multi-Protocol Fusion Internet of Things;Journal of Advanced Computational Intelligence and Intelligent Informatics;2022-09-20

4. Load balancing in the internet of things using fuzzy logic and shark smell optimization algorithm;Circuit World;2020-10-19

5. RESEARCH ON NODE AUTHORIZATION TRUSTED UPDATE MECHANISM BASED ON AGENT RE-ENCRYPTION IN IOT CLOUD;INT J INNOV COMPUT I;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3