Advanced Control Strategies for Active Vibration Suppression in Laser Cutting Machines

Author:

Denkena Berend, ,Eckl Martin,Lepper Thomas

Abstract

Due to rising energy requirements, the use of low-weight materials is becoming more important, especially in aerospace and automotive engineering. Because of their high strength-to-weight ratio, carbon fiber reinforced plastics (CFRP) are increasingly replacing metals. These materials are usually machined by milling operations. Their main problems are high tool wear, thermal damage, and surface integrity. This paper presents a machine concept and control strategy to substitute milling with laser cutting. Because a high, constant-trajectory velocity is required during laser cutting operations, a highly dynamic machine tool is needed. Conventional machine tools requiring large workspaces are inertial and therefore unsuitable for this task. Thus, a portal machine concept was investigated with an additional laser scanner and lightweight moving components. To increase path accuracy, two control strategies were implemented and analyzed in a multi-body simulation. One approach is to use a frequency-separating filter, while the second is based on estimation of tool center point positioning error using a Kalman filter. An acceleration sensor located near the tool center point (TCP) or the drive current signal can be used as input for the Kalman filter. Both input signals are investigated and compared in this paper. Results presented in this paper show that with these control strategies, highly dynamic trajectories can be realized with high precision.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference20 articles.

1.   M. P. Bendsoe and O. Sigmund, “Optimization of Structural Topology, Shape, and Material,” Springer 2nded., XIV, 2003.

2.   N. Bhatnagar, N. Ramakrishan, K. Naik, and R. Komanduri, “On the Machining of Fiber Reinforced Plastic (FRP) Composite Laminates,” International Journal of Machine Tools & Manufacture, Vol.35, No.5, pp. 701-716, 1995.

3.   J. R. Ferreira and N. L. Coppini, “Machining optimisation in carbon fibre reinforced composite materials,” Journals of Materials Processing Technology, Vol.92-93, pp. 135-140, 1999.

4.   P. Jaeschke, F. Fischer, and U. Stute, “Cutting and trimming of carbon fibre reinforced thermoset and thermoplastic composites using high-power solid state laser sources,” International Conference on Manufacturing of Advanced Composites, 22-24 March, Belfast, 2011.

5.   S. Bluemel, P. Jaeschke, V. Wippo, S. Bastick, U. Stute, D. Kracht, and H. Haferkamp, “Laser Machining of CFRP using a high power laser – Investigation on the heat affected zone,” Proceedings of the 15thEuropean Conference on Composite Materials (ECCM 15), Venice, 24-28 June, 2012.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3