Model-Based Installation of Viscoelastic Damper Support for Reduction of Residual Vibration

Author:

Mori Kotaro,Kono Daisuke,Yamaji Iwao,Matsubara Atsushi, ,

Abstract

It is necessary to increase the damping of a machine support structure (support damping) to reduce the residual vibrations caused by rocking vibration. The stiffness of the machine support system (support stiffness) is also an important parameter that needs to be considered while designing machine tools, to avoid low frequency vibrations. However, conventional passive damper supports decrease the support stiffness while increasing the damping. In our previous study, a passive viscoelastic non-linear damper system for shear vibrations, where the vertical preload determines its damping coefficient, was developed to increase the support damping without decreasing the stiffness by focusing on the horizontal component of rocking vibration. The magnitude dependency of the damping capacity has been modeled. However, this damper system has a tradeoff relationship between natural frequency and damping capacity caused by changes in the preload distribution. Thus, adjustment of the vertical preload applied on the damper is essential for the model-based installation of this damper system. So far, no method has been proposed considering this issue. The vertical preload has been adjusted by trial and error methods. This study proposes a method to determine the damper preload conditions systematically by considering the tradeoff relationship between natural frequency and damping capacity caused by changes in the preload distribution. This method is described based on the case study of a machining center. First, the relationship between preload distribution and support stiffness is investigated using the support stiffness model. Then, the relationship between damping capacity and vertical preloads on the damper is investigated based on material test results. Based on these investigations, the tradeoff relationships are simulated on a machining center by utilizing the damper model. The simulation results are verified with the experimental results. The results show that the proposed method can estimate the tradeoff relationship between natural frequency and damping capacity caused by the changes in the preload distribution. By utilizing this estimated relationship, the preferred preload condition can be decided depending upon the user’s demand.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3