Cutting Performance of Coated Cemented Carbide Tool in Driven Rotary Cutting of Hardened Steel

Author:

Kato Hideharu,Takase Noriyuki,Watanabe Kentaro,Shikimura Tatsuya,Kubota Kazuyuki, , , , ,

Abstract

Recently, cutting has replaced grinding in the finishing process for hardened steel. However, tool damage is a major problem in high-efficiency operations that use high-speed cutting and high-feed rate conditions rather than more conventional cutting conditions. Therefore, a new cutting technique that can realize high-efficiency cutting is desired. In our previous study, the processing efficiency was improved three to five times compared with conventional hardened steel cutting by driven rotary cutting. Furthermore, to attain high efficiency, the resistance of the tool material to wear and oxidation must be improved. In this study, the cutting performance of tools with an Al-rich coating, which improves oxidation resistance, is investigated for high cutting speed applications. In the present experiments, the flank wear of the Al-rich tool was less than 40 μm at a high cutting speed of 2.51 m/s, even for a cutting length of 10.0 km. Additionally, the Al-rich tool wear advanced progressively without flaking. In contrast, the conventional TiAlN-coated tools exhibited serious failure at cutting lengths of 3.0 km. It is thought that the difference in the oxidation resistance of the two tools influenced the cutting performance. Therefore, the tool with the Al-rich coating can operate with a high efficiency even at high cutting speeds.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3