Effect of Pulse Conditions on Machining Characteristics in Bipolar-Pulse Electrochemical Machining of Cemented Carbide

Author:

Koyano Tomohiro1ORCID,Hokin Taisei2,Furumoto Tatsuaki3ORCID

Affiliation:

1. Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan

2. Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan

3. Advanced Manufacturing Technology Institute (AMTI), Kanazawa University, Kanazawa, Japan

Abstract

Electrochemical machining was performed on two cemented carbides with different compositions using unipolar and bipolar short-pulse voltages to investigate the effects of the composition and pulse conditions on the machining characteristics. In the case of cemented carbides with high cobalt and low tungsten carbide (WC) contents, machining progressed even when a unipolar voltage was used. This is believed to be due to the dissolution of the binder, that is, Co, which causes the WC and WO3 particles to drop out. Machining progressed more easily when a bipolar voltage was used than when a unipolar voltage was used. This is attributed to the effective removal of WO3. The unevenness of the machined surface was also reduced with bipolar voltage. The negative pulse duration had to be sufficiently but appropriately long, because too long a duration increased the wear of the tool electrode. Even when bipolar pulse voltages were used, similar to the machining of general materials, a shorter positive pulse duration resulted in more precise machining. However, in the case of cemented carbide with low Co and high WC contents, the removal did not progress when a unipolar pulse voltage was applied. On the other hand, the machining progressed when a bipolar voltage was applied. However, if the positive pulse duration was excessively long, the amount of removal decreased. This is believed to be because the longer positive pulse duration increased the amount of WO3 generated, thereby inhibiting the current flow. Therefore, it is necessary to set an appropriate positive pulse duration to avoid the excessive production of WO3.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3