Using a Kalman Filter to Estimate Unsteady Flow

Author:

Sanada Kazushi,

Abstract

A Kalman filter that estimates incompressible unsteady flow in a pipe is proposed in this paper. It is a steady-state Kalman filter based on amodel of pipeline dynamics, that is, an optimized finite element model developed by the author. Pressure signals at both ends of a target section of a pipe are input to the model of pipeline dynamics, and, as an output of the model, an estimated pressure signal at a mid-point in the pipe is obtained. The deviation between a measured and an estimated pressure signal at the mid-point is fed back to the dynamic model of the pipeline to modify state variables of the model, which are pressure and flow rate along the pipe. According to the Kalman filter principle, the state variables of the model are modified as to converge to real values. The Kalman filter is examined by experiment using an oil-hydraulic circuit. The unsteady flow and unsteady pressure of a delivery port of an oil-hydraulic pump are estimated by the Kalman filter. The performance of the Kalman filter is demonstrated, and its bandwidth is discussed.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference10 articles.

1. S. Yokota, D.-T. Kim etc., “An Approach to Unsteady Flow Rate Measurement Utilizing Dynamic Characteristics between Pressure and Flow Rate along Pipeline,” Trans. JSME. C, Vol.57, No.541, pp. 2872-2876. (in Japanese)

2. T. Zhao, A. Kitagawa etc., “A Real Time Measuring Method of Unsteady Flow Rate and Velocity Employing a Differential Pressure,” Trans. JSME. B, Vol.57, No.541, pp. 2851-2859. (in Japanese)

3. T. Hayase, “Ultrasonic-Measurement-Integrated Simulation of Blood Flows,” J. of the Japan Fluid Power System Society, Vol.37, No.5, pp. 302-305, 2006.

4. Y. Okamoto, M. Nakao, K. Tadano, K. Kawashima, and T. Kagawa, “A Distributed Observer Based on Numerical Simulation for a Pipeline Connecting to Pneumatic Cylinder,” Proc. of the 8th JFPS Int. Symp. on Fluid Power, OKINAWA 2011, pp. 514-520.

5. K. Sanada and A. Kitagawa, “A Finite-Element Model of Pipeline Dynamics Using an Optimized Interlacing Grid System,” Trans. JSME. C, Vol.60, No.578, pp. 3314-3321. (in Japanese)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flowrate Measurement in a Pipe Using Kalman-Filtering Laminar Flowmeter;Journal of Robotics and Mechatronics;2020-10-20

2. Modelling and experimental studies on a proportional valve using an innovative dynamic flow-rate measurement in fluid power systems;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2017-07-28

3. Comparison of Bayesian estimation methods for modeling flow transients in gas pipelines;Journal of Natural Gas Science and Engineering;2017-02

4. State estimation of transient flow in gas pipelines by a Kalman filter-based estimator;Journal of Natural Gas Science and Engineering;2016-09

5. Advanced Control Strategies for Active Vibration Suppression in Laser Cutting Machines;International Journal of Automation Technology;2015-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3