Author:
Bolotov Sergey, ,Kobayashi Ryuichi,Shimada Keita,Mizutani Masayoshi,Kuriyagawa Tsunemoto
Abstract
Molding is an effective and efficient approach to producing highly functional optical elements with complex shapes. However, edge sharpness is a serious problem with molded microstructures. An Ultrasonic-Assisted Molding (UAM) device was developed to improve shape transferability. First, basic experiments showed that UAM induced a maximum temperature increase of 3.2°C for a polycarbonate substrate with a starting temperature of 170°C, and the stick-slip phenomenon was not observed with ultrasonic vibration. Second, UAM and conventional molding simulation models were constructed to compare the transferability of a microgroove; ultrasonic superimposed press movement demonstrated the highest transferability. Finally, micrograting was fabricated using UAM and conventional molding, and the UAMmicrograting had better transferability with a 30-smolding time. Therefore, UAM may be an effective process for reducing molding time.
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference18 articles.
1. C. Lin, Y. Fang, and P. Yang, “Optical film with microstructures array for slim-type backlight applications,” Optik – Int. J. for Light and Electron Optics, Vol.122, Issue 13, pp. 1169-1173.6, 2010.
2. L. Thomas, N. Johan, and M. Gyorgy, “Silicon microstructures for high-speed and high-sensitivity protein identifications,” J. of Chromatography B: Biomedical Sciences and Applications, Vol.752, Issue 2, pp. 217-232, 2001.
3. J. Yan, T. Oowada, T. Zhou, and T. Kuriyagawa, “Precision machining of microstructures on electroless-plated NiP surface for molding glass components,” J. of Materials Processing Technology, Vol.209, Isseu 10, pp. 4802-4808, 2009.
4. J. Yan, K. Maekawa, J. Tamaki, and T. Kuriyagawa, “Micro grooving on single-crystal germanium for infrared Fresnel lenses,” J. of Micromechanics and Microengineering, Vol.10, pp. 1925-1931, 2005.
5. S. Hava and M. Auslender, “Design and analysis of low-reflection grating microstructures for a solar energy absorber,” Solar Energy Materials and Solar Cells, Vol.61, Issue 2, pp. 143-151, 2000.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献