Minimizing Burrs and Defects on Microstructures with Laser Assisted Micromachining Technology

Author:

Xu Shaolin, ,Osawa Shinsaku,Kobayashi Ryuichi,Shimada Keita,Mizutani Masayoshi,Kuriyagawa Tsunemoto, ,

Abstract

Molding technology is widely used to manufacture optical components because of its high efficiency. Along with the quick development of miniaturization in industry, the detrimental effects of previously negligible burrs and defects on mold surfaces have become significant to the performance of components, so these problems should be minimized. In this study, a laser assisted micromachining method was developed to solve this problem during the fabrication of periodic microstructures on a molding material of electroless nickel-phosphorus (NiP) plating. The transient temperature distributions of the workpiece under laser irradiation and the change in the maximum shear stress during the laser assisted micromachining process were simulated to set appropriate experimental conditions. Then, periodic micropyramid structures were fabricated by both conventional cutting and the laser assisted cutting processes. Results show that defects largely decreased on machined structures with the assistance of laser irradiation. The decrease in specific cutting force and the change of chips’ morphology were also utilized to analyze the reasons for this improvement.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3