Improvement of Transfer Durability of a Pillar-Shaped Release-Agent-Free Replica Mold in Ultraviolet Nanoimprint Lithography

Author:

Tsuchiya Junpei,Nakagawa Gen,Hiwasa Shin,Taniguchi Jun, ,

Abstract

Ultraviolet nanoimprint lithography (UV-NIL) can be used to fabricate nanoscale patterns with high throughput. It is expected to serve as a low-cost technique for the production of items in large numbers. However, master molds for UV-NIL are expensive and laborious to produce, and there are problems associated with the deterioration of the master mold and damage to its nanopattern due to adhesion of the UV-curable resin. Consequently, the UV-curable resin has to combine low-viscosity characteristics for coatability with an antisticking property. Coating a master mold with a release layer is important in preventing damage to the master mold or adhesion between the mold and the UV-curable resin. However, the released layer deteriorates as the master mold is repeatedly used to fabricate nanopatterns. By contrast, the use of a replica mold is a valuable technique for preventing the deterioration of the master mold, and there have been several studies on the fabrication of replicas of master molds with the use of UV-curable resins. In many cases, the fabrication of nanopatterns with replica molds requires the use of a release agent. In a previous study, we developed a material for replica molds that does not require a release agent. This material consisted of a UV-curable resin with an antifouling effect that was prepared from cationically polymerizable UV-curable and epoxy-modified fluorinated resins. With the use of this material, replica molds with patterns of pillars or holes were fabricated with UV-NIL. The lifetime of the mold with the nanopattern of pillars was shorter than that with holes. In addition, the replica mold with the pillar-shaped nanopattern had numerous defects and allowed adhesion of the transfer resin after repeated efforts. Herein, we describe an improved release-agent-free hard replica mold. We transferred large numbers of nanopatterns of pillars from the replica mold, and evaluated the error rate and contact angle of our improved release-agent-free hard replica mold. The resulting release-agent-free replica mold with a nanopattern of pillars was capable of transferring up to 1000 sequential imprints. In addition, to improve the release properties of the transfer resin, we included an additive to the transfer resin that contained a reactive fluorinated material. This material improved the release properties of the transfer resin and mitigated the deterioration of the contact angle and increase in the error rate.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3