Development of Bipolar Electrostatic Chuck with a Beam-Array Assembly Fabricated by Lithography
-
Published:2022-07-05
Issue:4
Volume:16
Page:471-477
-
ISSN:1883-8022
-
Container-title:International Journal of Automation Technology
-
language:en
-
Short-container-title:IJAT
Author:
Taoka Yuki, ,Kawabata Kohei,Hemthavy Pasomphone,Choi Seungman,Takahashi Kunio,Saito Shigeki
Abstract
This technical paper demonstrates the influence of the probe-tip surface smoothness of a bipolar electrostatic chuck (ESC) on electrostatic force. ESC, which has a silicon-based beam-array microstructure, aims to pick and place a dielectric object with a curved surface owing to the compliance of its elastically deformable beams. The ESC was fabricated using a lithography technique, specifically deep reactive ion etching (DRIE), to smooth the surface of the beam tip. The surface roughness of the beam tips was observed using a field-emission scanning electron microscope (FE-SEM), and the adhesional force was experimentally evaluated. The results show that by the smoothing process, the adhesional force per unit area is significantly increased compared to the previous study reported by Choi (one of the authors). This suggests that the proposed bipolar ESC device has great potential for use in various industries.
Funder
Ministry of Education, Culture, Sports, Science and Technology
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference20 articles.
1. R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y. S. Kim, W. H. Yeo, J. S. Park, J. Song, Y. Li, Y. Huang, A. M. Gorbach, and J. A. Rogers, “Ultrathin conformal devices for precise and continuous thermal characterisation of human skin,” Nature Materials, Vol.12, Issue 10, pp. 938-944, 2013. 2. D. Kang, P. V. Pikhitsa, Y. W. Choi, C. Lee, S. S. Shin, L. Piao, B. Park, K. Y. Suh, T. Kim, and M. Choi, “Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system,” Nature, Vol.516, Issue 7530, pp. 222-226, 2014. 3. S. Patel, H. Park, P. Bonato, L. Chan, and M. Rodgers, “A review of wearable sensors and systems with application in rehabilitation,” J. of NeuroEngineering and Rehabilitation, Vol.9, No.21, 21, 2012. 4. H. Kudo, T. Sawada, E. Kazawa, H. Yoshida, Y. Iwasaki, and K. Mitsubayashi, “A flexible and wearable glucose sensor based on functional polymers with Soft-MEMS techniques,” Biosensors and Bioelectronics, Vol.22, No.4, pp. 558-562, 2006. 5. F. Ilievski, A. D. Mazzeo, R. F. Shepherd, X. Chen, and G. M. Whitesides, “Soft Robotics for Chemists,” Angewandte Chemie Int. Edition, Vol.50, Issue 8, pp. 1890-1895, 2011.
|
|