Author:
Zhang Xia, ,Hashimoto Minoru
Abstract
In this paper we propose a framework of realizing natural assist behavior with a movement-assist suit inspired by human interaction. Since human interaction can be thought as synchronization behavior common in movement assistance between human beings, to achieve human-like movement assistance, synchronization-based control is applied to a movement-assist suit. We use neural oscillators to entrain and synchronize suit movement with that of users. To determine validity and feasibility, we examine the proposal for whether (1) synchronization of action between human and movement-assist suit can be realized, (2) the assist effect can be obtained, and (3) the proposed method is comfortable for users. To determine these points, we simulated movement assistance and conducted experiments with a joint-torque-sensing assist suit. Results demonstrated that synchronized movement was realized and that a movement-assistance effect was implemented. Results of evaluation experiments showed the good usability the suit has as proposed, confirming the proposal's applicability and performance.
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference17 articles.
1. H. Kawatoto and Y. Sankai, “Power assist method based on Phase Sequence and muscle force condition for HAL,” Advanced Robotics, Vol.19, No.7, pp. 717-734, 2005.
2. H. Kazerooni, J.-L. Racine, L. Huang, and R. Steger, “On the Control of the Berkeley Lower Extremity Exoskeleton(BLEEX),” IEEE Int. Conf. on Robotics and Automation, Barcelona, pp. 4364-4371, April 2005.
3. A. Chu, H. Kazerooni, and A. Zoss, “On the Biomimetic Design of the Berkeley Lower Extremity Exoskeleton(BLEEX),” IEEE Int. Conf. on Robotic and Automation, Barcelona, pp. 4356-4363, April 2005.
4. K. Kong, H. Moon, B. Hwang, D. Jeon, and M. Tomizuka, “Robotic Rehabilitation Treatments: Realization of Aquatic Therapy Effects in Exoskeleton Systems,” IEEE Int. Conf. on Robotic and Automation, Japan, pp. 1923-1928, May 2009.
5. T. Nakamura, K. Saito, Z. Wang, K. Kosuge, and M. Tajika, “Human Cooperative Motion Adapted Wearable Anti-Gravity Muscle Support System,” IEEE Int. Conf. on Intelligent Robot and System, pp. 1843-1848, 2006.