3-D Obstacle Detection Using Laser Range Finder with Polygonal Mirror for Powered Wheelchair

Author:

Kato Kohei, ,Seki Hiroaki,Hikizu Masatoshi

Abstract

Because a large number of accidents with electric wheelchairs are due to operational errors, steering assistance systems for wheelchairs have been studied in a variety of ways. One of the basic systems is 3-D obstacle detection around the wheelchair. One method uses a stereo camera for detecting obstacles by image processing. However, this method is less reliable under varying light conditions. A laser range sensor is another useful device for obstacle detection. However, it requires a complex swinging mechanism for 3-D positioning which makes the measuring time too long. Therefore, this paper presents a 3-D obstacle detection system for electric wheelchairs using a 2-D laser range sensor. We set up only one 2-D laser range sensor over the wheelchair, and attached mirrors around it to reflect the laser light obliquely downwards. Then, we gathered obstacle points while the electric wheelchair was moving and made a 3-D obstacle map to assist steering. We built a prototype device and confirmed by experimentation that it is able to detect obstacles in 3-D.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Line-Based Planar Structure Extraction from a Point Cloud with an Anisotropic Distribution;International Journal of Automation Technology;2017-06-29

2. Dynamic Simulation of an Electric Stair-Climbing Wheelchair;International Journal of Automation Technology;2017-04-28

3. Experimental Performance Assessment of Mantis 2, Hybrid Leg-Wheel Mobile Robot;International Journal of Automation Technology;2017-04-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3