Author:
Luo Xiaoyan,Huang Yaofeng,Zhang Fangwei,Wu Qingling, ,
Abstract
To address the problem of wet ball milling in a strong noise environment, it is difficult to accurately detect the internal load parameters of the cylinder during grinding. In this paper, a mill load parameter prediction method is proposed based on complementary ensemble empirical mode decomposition (CEEMDAN)-refined composite multiscale dispersion entropy (RCMDE) and-long and short-term memory (LSTM) neural networks. Using this method, the vibration signals of the mill barrel under strong noise were decomposed using the CEEMDAN algorithm, sensitive modal components with strong correlation with the original signal were selected for reconstruction using the correlation coefficient method, and features of the reconstructed signals under different load parameters were extracted through RCMDE. The load characteristic vector of an RCMDE mill was used as the input of LSTM neural networks, and the filling rate, material and ball ratio, and grinding concentration were used as the output to establish the internal load prediction model of wet mill. Experiment results show that the prediction method has a high accuracy, with average absolute percentage errors of the filling rate, feed-to-ball ratio, and grinding concentration of 6.08%, 3.50%, and 3.47%, and average absolute errors were of 0.0167, 0.0146, and 0.0146, respectively.
Funder
Education Department of Jiangxi Province
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference27 articles.
1. Y. Sha, T. Chang, and J. Chang, “Measure Methods of Ball Mill’s Load,” Modern Electric Power, 2006.
2. S. P. Das, D. P. Das, S. K. Behera, and B. K. Mishra, “Interpretation of mill vibration signal via wireless sensing,” Minerals Engineering, Vol.24, Issues 3-4, pp. 245-251, 2010.
3. J. Tang, L.-J. Zhao, J.-W. Zhou, H. Yue, and T.-Y. Chai, “Experimental analysis of wet mill load based on vibration signals of laboratory-scale ball mill shell,” Minerals Engineering, Vol.23, Issue 9, pp. 720-730, 2010.
4. G. Cai, L. Zong, X. Liu, and X. Luo, “Load identification method of ball mill based on MEEMD-multi-scale fractal box dimension and ELM,” CIESC J., Vol.70, No.2, pp. 764-771, 2019 (in Chinese).
5. J. Tang, T. Chai, W. Yu, and L. Zhao, “Modeling load parameters of ball mill in grinding process based on selective ensemble multisensor information,” IEEE Trans. on Automation Science and Engineering, Vol.10, No.3, pp. 726-740, 2013.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献