Wear Prediction of Tool Based on Modal Decomposition and MCNN-BiLSTM

Author:

He Zengpeng1,Liu Yefeng12ORCID,Pang Xinfu3,Zhang Qichun4ORCID

Affiliation:

1. School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110159, China

2. Liaoning Key Laboratory of Information Physics Fusion and Intelligent Manufacturing for CNC Machine, Shenyang Institute of Technology, Fushun 113122, China

3. School of Automation, Shenyang Institute of Engineering, Shenyang 110136, China

4. Department of Computer Science, University of Bradford, Bradford BD71DP, UK

Abstract

Metal cutting is a complex process with strong randomness and nonlinear characteristics in its dynamic behavior, while tool wear or fractures will have an immediate impact on the product surface quality and machining precision. A combined prediction method comprising modal decomposition, multi-channel input, a multi-scale Convolutional neural network (CNN), and a bidirectional long-short term memory network (BiLSTM) is presented to monitor tool condition and to predict tool-wear value in real time. This method considers both digital signal features and prediction network model problems. First, we perform correlation analysis on the gathered sensor signals using Pearson and Spearman techniques to efficiently reduce the amount of input signals. Second, we use Complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to enhance the local characteristics of the signal, then boost the neural network’s identification accuracy. In addition, the deconstructed signal is converted into a multi-channel input matrix, from which multi-scale spatial characteristics and two-way temporal features are recovered using multi-scale CNN and BiLSTM, respectively. Finally, this strategy is adopted in simulation verification using real PHM data. The wear prediction experimental results show that, in the developed model, C1, C4, and C6 have good prediction performance, with RMSE of 8.2968, 12.8521, 7.6667, and MAE of 6.7914, 9.9263, and 5.9884, respectively, significantly lower than SVR, B-BiLSTM, and 2DCNN models.

Funder

National Science Foundation of China

Liaoning Province Natural Science Foundation

Shen-Fu Demonstration Zone Science and Technology Plan Project

State Key Laboratory of Synthetical Automation for Process Industries

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3