Affiliation:
1. School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110159, China
2. Liaoning Key Laboratory of Information Physics Fusion and Intelligent Manufacturing for CNC Machine, Shenyang Institute of Technology, Fushun 113122, China
3. School of Automation, Shenyang Institute of Engineering, Shenyang 110136, China
4. Department of Computer Science, University of Bradford, Bradford BD71DP, UK
Abstract
Metal cutting is a complex process with strong randomness and nonlinear characteristics in its dynamic behavior, while tool wear or fractures will have an immediate impact on the product surface quality and machining precision. A combined prediction method comprising modal decomposition, multi-channel input, a multi-scale Convolutional neural network (CNN), and a bidirectional long-short term memory network (BiLSTM) is presented to monitor tool condition and to predict tool-wear value in real time. This method considers both digital signal features and prediction network model problems. First, we perform correlation analysis on the gathered sensor signals using Pearson and Spearman techniques to efficiently reduce the amount of input signals. Second, we use Complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to enhance the local characteristics of the signal, then boost the neural network’s identification accuracy. In addition, the deconstructed signal is converted into a multi-channel input matrix, from which multi-scale spatial characteristics and two-way temporal features are recovered using multi-scale CNN and BiLSTM, respectively. Finally, this strategy is adopted in simulation verification using real PHM data. The wear prediction experimental results show that, in the developed model, C1, C4, and C6 have good prediction performance, with RMSE of 8.2968, 12.8521, 7.6667, and MAE of 6.7914, 9.9263, and 5.9884, respectively, significantly lower than SVR, B-BiLSTM, and 2DCNN models.
Funder
National Science Foundation of China
Liaoning Province Natural Science Foundation
Shen-Fu Demonstration Zone Science and Technology Plan Project
State Key Laboratory of Synthetical Automation for Process Industries
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献