Adaptive Cutting Force Prediction in Milling Processes

Author:

Matsumura Takashi, ,Shirakashi Takahiro,Usui Eiji

Abstract

An adaptive force model is presented to predict the cutting force and the chip flow direction in milling. The chip flow model in the milling process is made by piling up the orthogonal cuttings in the planes containing the cutting velocities and the chip flow velocities. The chip flow direction is determined to minimize the cutting energy. The cutting force is predicted using the determined chip flow model. The force model requires the orthogonal cutting data, which associate the orthogonal cutting models with the cutting parameters. Basically, the required data for simulation can be measured in the orthogonal cutting tests. However, it is difficult to perform the cutting tests with specialized setups in the machine shops. The paper presents the adaptive model to accumulate and update the orthogonal cutting data with referring the measured cutting forces in milling. The orthogonal cutting data are identified to minimize the error between the predicted and the measured cutting forces. Then, the cutting forces can be predicted well in many cutting operations using the identified orthogonal cutting data. The adaptive is effective not only in extending the database but also in improving the quality of the database for the accurate predictions.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study of cutting force in milling of aluminum-lithium alloy;Materials Research Proceedings;2024-05-15

2. Effect of Strain Hardening on Burr Control in Drilling of Austenitic Stainless Steel;International Journal of Automation Technology;2024-05-05

3. Evaluation Approach for Residual Stress in Drilling of Aluminum Alloy;International Journal of Automation Technology;2024-05-05

4. Cutting process in non-step drilling of deep hole with tool wear progress;Journal of Advanced Mechanical Design, Systems, and Manufacturing;2024

5. Cutting Force in Peripheral Milling of Additively Manufactured Maraging Steel;International Journal of Automation Technology;2022-11-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3