Effect of Strain Hardening on Burr Control in Drilling of Austenitic Stainless Steel

Author:

Tamura Shoichi1ORCID,Okamura Kota2,Uetake Daisuke2,Matsumura Takashi1ORCID

Affiliation:

1. Tokyo Denki University, 5 Senju Asahi-cho, Adachi-ku, Tokyo 120-8551, Japan

2. Industrial Technology Center of Tochigi Prefecture, Sano, Japan

Abstract

Austenitic stainless steel has been widely used in various industries, such as aerospace, medical, and hydrogen energy, due to its high strength over a wide range of temperatures, corrosion resistance, and biocompatibility. However, stainless steel is a difficult-to-cut metal because its ductility and low thermal conductivity induce a strain hardening with significant plastic deformation at high temperatures. Burr formed at the back side of a plate is a critical issue which deteriorates the surface quality, especially in drilling. Burr removal operation, therefore, should be done in the machine shop. This study discusses the effect of strain hardening of austenitic stainless steel, SUS 316L, on burr formation. Hardness and cutting tests were conducted to compare the strain hardening effect for three types of workpieces: as-received, pre-machined, and tensile treated specimens. In the employed specimens, the tensile treated specimen is harder than the as-received specimen. Those specimens have uniform hardness in the depth direction from surfaces. Pre-machined specimen, in which the back side of the plate was finished by face milling, has a distribution of hardness in the depth direction from a surface. The highest hardness appears in the subsurface of the pre-machined specimen. The cutting forces in the steady processes, in which the entire edges remove material, were nearly the same as the tested specimens each other. However, remarkable differences were confirmed in the chip thickness and burr formation. The higher strain hardening of the tensile treated specimen is effective to suppress burr formation. The cutting characteristics are then identified to associate burr control with the shear plane model of orthogonal cutting using an energy-based force model. The shear stresses, shear angles, and friction angles of the tensile treated and as-received specimens are compared to discuss the effect of strain hardening on reduction of burr formation.

Funder

Osawa Scientific Studies Grants Foundation

Publisher

Fuji Technology Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3