Simultaneous Evaluation of Environmental Impact and Incurred Cost on Selection of End-Of-Life Products Recovery Options

Author:

Okumura Susumu, ,Matsumoto Yuuki,Hatanaka Yuji,Ogohara Kazunori, ,

Abstract

Conventional production and consumption systems, in which industrial products are manufactured, consumed, and then finally disposed, have significant environmental impacts. Reusing and recycling product components in the manufacture of industrial products has recently become popular as an effective way of conserving natural resources. In this study, we propose a method to assign each product component a reasonable end-of-life (EOL) option (reuse, recycling, and disposal) in the product design phase. We develop a method, in which a product tree is generated by a multi-agent system, to determine EOL options considering component combinations based on environmental impact and incurred cost. In addition, we optimize the disassembly level for better reuse and recycling. The proposed determination method of EOL options for components in a product is justified by numerical examples using an inkjet printer.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference30 articles.

1. H.-Y. Kang and J. M. Schoenung, “Electronic waste recycling: A review of U. S. infrastructure and technology options,” Resources, Conservation and Recycling, Vol.45, No.4, pp. 368–400, 2005.

2. H. Yoshida, K. Shimamura, and H. Aizawa, “3R strategies for the establishment of an international sound material-cycle society,” J. of Material Cycles and Waste Management, Vol.9, No.2, pp. 101–111, 2007.

3. K. Ulrich and K. Tung, “Fundamentals of product modularity,” American Society of Mechanical Engineers, Design Engineering Division (Publication) DE, Vol.39, pp. 73–79, 1991.

4. K. Ishii, B. H. Lee, and C. F. Eubanks, “Design for product retirement and modularity based on technology life-cycle,” American Society of Mechanical Engineers, Manufacturing Engineering Division, MED, Vol.2, No.2, pp. 921–933, 1995.

5. C. Y. Baldwin and K. B. Clark, “Managing in an age of modularity,” Harvard Business Review, Vol.75, No.5, pp. 84–93, 1997.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3