Evolution of the Resistance of Botrytis cinerea to Carbendazim and the Current Efficacy of Carbendazim Against Gray Mold After Long-Term Discontinuation

Author:

He Leiming1,Cui Kaidi1,Li Tongtong1,Song Yufei1,Liu Ning2,Mu Wei1ORCID,Liu Feng1ORCID

Affiliation:

1. Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, P. R. China

2. Department of Mycology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, P. R. China

Abstract

Gray mold caused by Botrytis cinerea is a fungal disease that critically threatens agricultural production, and carbendazim was the first fungicide used to control B. cinerea. However, B. cinerea developed serious resistance to carbendazim, and this fungicide has thus rarely been used in the past decade in China. Due to the extended discontinuation of carbendazim use, the evolution of the resistance of B. cinerea to carbendazim in recent years is unclear, and whether carbendazim can effectively control gray mold is largely unknown. Therefore, this study determined the sensitivity of 407 B. cinerea isolates collected from 2014 to 2018 to carbendazim and the ability of carbendazim to control gray mold in the field. The results showed that the frequency of B. cinerea isolates resistant to carbendazim remained above 95%. Three different mutation types responsible for the resistance of B. cinerea to carbendazim were identified at codon 198 in the β-tubulin gene sequence: E198V (changed from GAG to GTG), E198A (changed from GAG to GCG), and E198K (changed from GAG to AAG). Over the last 5 years, E198V was the major mutation. However, an analysis of its evolution revealed that the percentage of the E198V mutation declined after 2017 to 56.5% in 2018. In addition, the proportion of isolates with the E198K mutation decreased over time, and no isolates with this mutation were found in either 2017 or 2018. The proportion of the E198A mutation increased over the 5-year test period to reach 43.5% in 2018. Furthermore, three greenhouse experiments demonstrated that carbendazim has lost its ability to control gray mold. We attribute the above findings to our results showing that the carbendazim-resistant isolates had no fitness penalties compared with the carbendazim-sensitive isolates for sporulation and mycelial growth. In particular, the E198A mutant isolates exhibited a strong ability to sporulate, suggesting that the E198A mutation might become dominant in the future. Interestingly, the results showed that carbendazim-sensitive isolates could be easily controlled by four conventional fungicides, namely boscalid, procymidone, iprodione, and pyrimethanil, with mean EC50 values of 0.71 ± 0.2 mg liter−1, 1.33 ± 0.39 mg liter−1, 0.59 ± 0.33 mg liter−1, and 6.02 ± 3.02 mg liter−1, respectively. In conclusion, carbendazim has lost its application value and is ineffective for the control of gray mold.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3