A Secreted SPRY Domain-Containing Protein (SPRYSEC) from the Plant-Parasitic Nematode Globodera rostochiensis Interacts with a CC-NB-LRR Protein from a Susceptible Tomato

Author:

Rehman Sajid,Postma Wiebe,Tytgat Tom,Prins Pjotr,Qin Ling,Overmars Hein,Vossen Jack,Spiridon Laurentiu-N.,Petrescu Andrei-J.,Goverse Aska,Bakker Jaap,Smant Geert

Abstract

Esophageal gland secretions from nematodes are believed to include effectors that play important roles in plant parasitism. We have identified a novel gene family encoding secreted proteins specifically expressed in the dorsal esophageal gland of Globodera rostochiensis early in the parasitic cycle, and which contain the B30.2/SPRY domain. The secondary structure of these proteins, named the secreted SPRY domain-containing proteins (SPRYSEC), includes highly conserved regions folding into β-strands interspersed with loops varying in sequence and in length. Mapping sequence diversity onto a three-dimensional structure model of the SPRYSEC indicated that most of the variability is in the extended loops that shape the so-called surface A in the SPRY domains. Seven of nine amino acid sites subjected to diversifying selection in the SPRYSEC are also at this surface. In both yeast-two-hybrid screening using a library from a susceptible tomato and in an in vitro pull-down assay, one of the SPRYSEC interacted with the leucine-rich repeat (LRR) region of a novel coiled-coil nucleotide-binding LRR protein, which is highly similar to members of the SW5 resistance gene cluster. Given that the tomato cultivar used is susceptible to nematode infection, this SPRYSEC could be an evolutionary intermediate that binds to a classical immune receptor but does not yet, or no longer, triggers a resistance response. Alternatively, this SPRYSEC may bind to the immune receptor to downregulate its activity.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3