A Multiplex TaqMan qPCR Assay for Detection and Quantification of Clade 1 and Clade 2 Isolates of Pseudoperonospora cubensis and Pseudoperonospora humuli

Author:

Crandall Sharifa G.1ORCID,Ramon Marina L.1,Burkhardt Alyssa K.1ORCID,Bello Rodriguez Julian Camilo2ORCID,Adair Nanci3,Gent David H.3,Hausbeck Mary K.2,Quesada-Ocampo Lina M.4ORCID,Martin Frank N.1

Affiliation:

1. Crop Improvement and Protection Unit, U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Salinas, CA 93905

2. Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824

3. Forage Seed and Cereal Research Unit, U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331

4. Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613

Abstract

The ability to detect and quantify aerially dispersed plant pathogens is essential for developing effective disease control measures and epidemiological models that optimize the timing for control. There is an acute need for managing the downy mildew pathogens infecting cucurbits and hop incited by members of the genus Pseudoperonospora (Pseudoperonospora cubensis clade 1 and 2 isolates and Pseudoperonospora humuli, respectively). A highly specific multiplex TaqMan quantitative polymerase chain reaction (PCR) assay targeting unique sequences in the pathogens’ mitochondrial genomes was developed that enables detection of all three taxa in a single multiplexed amplification. An internal control included in the reaction evaluated whether results were influenced by PCR inhibitors that can make it through the DNA extraction process. Reliable quantification of inoculum as low as three sporangia in a sample was observed. The multiplexed assay was tested with DNA extracted from purified sporangia, infected plant tissue, and environmental samples collected on impaction spore traps samplers. The ability to accurately detect and simultaneously quantify all three pathogens in a single multiplexed amplification should improve management options for controlling the diseases they cause.

Funder

Agriculture and Food Research Initiative

Pickle Packers International

U.S. Department of Agriculture Animal and Plant Health Inspection Service Awards

U.S. Department of Agriculture National Institute of Food and Agriculture

U.S. Department of Agriculture North Carolina Department of Agriculture Specialty Crop Block

North Carolina State Hatch Project

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3