Occurrence of Ascospores and White Mold Caused by Sclerotinia sclerotiorum in Dry Bean Fields in Alberta, Canada

Author:

Reich Jonathan12ORCID,McLaren Debra3,Kim Yong Min3ORCID,Wally Owen4ORCID,Yevtushenko Dmytro5,Hamelin Richard2ORCID,Balasubramanian Parthiba1,Chatterton Syama1ORCID

Affiliation:

1. Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada

2. Faculty of Forestry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

3. Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB R7A 5Y3, Canada

4. Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, OT N0R 1G0, Canada

5. University of Lethbridge, Lethbridge, AB T1K 3M4, Canada

Abstract

White mold caused by the fungal pathogen Sclerotinia sclerotiorum (Lib.) de Bary is one of the most important biological constraints to dry bean (Phaseolus vulgaris L.) production in Canada. Disease forecasting is one tool that could help growers manage the disease while reducing fungicide use. However, predicting white mold epidemics has remained difficult due to their sporadic occurrence. In this study, over the course of four growing seasons (2018 to 2021), we surveyed dry bean fields in Alberta and collected daily in-field weather data and daily in-field ascospore counts. White mold levels were variable and generally high in all years, confirming that the disease is ubiquitous and a constant threat to dry bean production. Ascospores were present throughout the growing season, and mean ascospore levels varied by field, month, and year. Models based on in-field weather and ascospore levels were not highly predictive of final disease incidence in a field, suggesting that environment and pathogen presence were not limiting factors to disease development. Rather, significant effects of market class on disease were found, with pinto beans, on average, having the highest disease incidence (33%) followed by great northern (15%), black (10%), red (6%), and yellow (5%). When incidence of these market classes was modeled separately, different environmental variables were important in each model; however, average wind speed was a significant variable in all models. Taken together, these findings suggest that white mold management in dry bean should focus on fungicide use, plant genetics, irrigation management, and other agronomic factors.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3