Predicting airborne ascospores of Sclerotinia sclerotiorum through machine learning and statistical methods

Author:

Reich Jonathan12ORCID,McLaren Debra3,Kim Yong Min3,Wally Owen4,Yevtushenko Dmytro5,Hamelin Richard2,Chatterton Syama1

Affiliation:

1. Lethbridge Research and Development Centre, Agriculture and Agri‐Food Canada Lethbridge Alberta Canada

2. Faculty of Forestry University of British Columbia Vancouver British Columbia Canada

3. Brandon Research and Development Centre, Agriculture and Agri‐Food Canada Brandon Manitoba Canada

4. Harrow Research and Development Centre, Agriculture and Agri‐Food Canada Harrow Ontario Canada

5. University of Lethbridge Lethbridge Alberta Canada

Abstract

AbstractA main biological constraint of dry bean (Phaseolus vulgaris) production in Canada is white mould, caused by the fungal pathogen Sclerotinia sclerotiorum. The primary infectious propagules of S. sclerotiorum are airborne ascospores and monitoring the air for inoculum levels could help predict the severity of white mould in bean fields. Daily air samples were collected in commercial dry bean fields in Alberta, Manitoba and Ontario and ascospores were quantified using quantitative PCR. Daily weather data was obtained from in‐field weather stations. The number of ascospores on a given day was modelled using 63 different environmental variables and several modelling methods, both regression and classification approaches, were implemented with machine learning (ML) (random forests, logistic regression and support vector machines) and statistical (generalized linear models) approaches. Across all years and provinces, ascospores were most highly correlated with ascospore release from the previous day (r ranged from 0.15 to 0.6). This variable was also the only variable included in all models and had the greatest weight in all models. Models without this variable had much poorer performance than those with it. Correlations of ascospores with other environmental variables varied by province and sometimes by year. A comparison of ML and statistical models revealed that they both performed similarly, but that the statistical models were easier to interpret. However, the precise relationship between airborne ascospore levels and in‐field disease severity remains unclear, and spore sampling methods will require further development before they can be deployed as a disease management tool.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3