Detection of Latent Monilinia Infections in Nectarine Flowers and Fruit by qPCR

Author:

Garcia-Benitez C.1,Melgarejo P.1,De Cal A.1

Affiliation:

1. Department of Plant Protection, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain

Abstract

Most stone fruit with a latent brown rot infection caused by Monilinia do not develop visible signs of disease until the arrival of fruit at the markets or the consumer’s homes. The overnight freezing-incubation technique (ONFIT) is a well-established method for detecting latent brown rot infections, but it takes between 7 to 9 days. In this report, we inform on the advantages of applying a qPCR-based method to (i) detect a latent brown rot infection in the blossoms and fruit of nectarine trees (Prunus persica var. nucipersica) and (ii) distinguish between the Monilinia spp. in them. For applying this qPCR-based method, artificial latent infections were established in nectarine flowers and fruit using 10 Monilinia fructicola isolates, 8 M. fructigena isolates, and 10 M. laxa isolates. We detected greater amounts of M. fructicola DNA than M. laxa and M. fructigena DNA in latently infected flowers using qPCR. However, greater DNA amounts of M. laxa than M. fructicola were detected in the mesocarp of latently infected nectarines. We found that the qPCR-based method is more sensitive, reliable, and quicker than ONFIT for detecting a latent brown rot infection, and could be very useful in those countries where Monilinia spp. are classified as quarantine pathogens.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3