History, Epidemic Evolution, and Model Burn-In for a Network of Annual Invasion: Soybean Rust

Author:

Sanatkar M. R.1,Scoglio C.1,Natarajan B.1,Isard S. A.1,Garrett K. A.1

Affiliation:

1. First, second, and third authors: Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506; first and fifth authors: Department of Plant Pathology, Kansas State University, Manhattan, KS 66506; fourth author: Department of Plant Pathology & Environmental Microbiology and Department of Meteorology, Pennsylvania State University, University Park, PA 61802; and fifth author: Institute for Sustainable Food Systems and Plant Pathology Department, University of Florida,...

Abstract

Ecological history may be an important driver of epidemics and disease emergence. We evaluated the role of history and two related concepts, the evolution of epidemics and the burn-in period required for fitting a model to epidemic observations, for the U.S. soybean rust epidemic (caused by Phakopsora pachyrhizi). This disease allows evaluation of replicate epidemics because the pathogen reinvades the United States each year. We used a new maximum likelihood estimation approach for fitting the network model based on observed U.S. epidemics. We evaluated the model burn-in period by comparing model fit based on each combination of other years of observation. When the miss error rates were weighted by 0.9 and false alarm error rates by 0.1, the mean error rate did decline, for most years, as more years were used to construct models. Models based on observations in years closer in time to the season being estimated gave lower miss error rates for later epidemic years. The weighted mean error rate was lower in backcasting than in forecasting, reflecting how the epidemic had evolved. Ongoing epidemic evolution, and potential model failure, can occur because of changes in climate, host resistance and spatial patterns, or pathogen evolution.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3