Decision support for managing an invasive pathogen through efficient clean seed systems: Cassava mosaic disease in Southeast Asia

Author:

Andersen Onofre Kelsey F.ORCID,Delaquis ErikORCID,Newby Jonathan C.ORCID,de Haan StefORCID,Le Thuy Cu Thi,Minato Nami,Legg James P.ORCID,Cuellar Wilmer J.ORCID,Alcalá Briseño Ricardo I.,Garrett Karen A.ORCID

Abstract

AbstractCONTEXTEffective seed systems must both distribute high-performing varieties efficiently and slow or stop the spread of pathogens and pests. Epidemics increasingly threaten crops around the world, endangering the incomes and livelihoods of smallholder farmers. Responding to these food and economic security challenges requires stakeholders to act quickly and decisively during the early stages of invasions, typically with very limited resources. The recent introduction of cassava mosaic virus into southeast Asia threatens cassava production in the region.OBJECTIVESOur goal in this study is to provide a decision-support framework for efficient management of healthy seed systems, applied to cassava mosaic disease. The specific objectives are to (1) evaluate disease risk in disease-free parts of Cambodia, Lao PDR, Thailand, and Vietnam by integrating disease occurrence, climate, topology, and land use, using machine learning; (2) incorporate this predicted environmental risk with seed exchange survey data and whitefly spread in the landscape to model epidemic spread in a network meta-population model; and (3) use scenario analysis to identify candidate regions to be prioritized in seed system management.RESULTS AND CONCLUSIONSThe analyses allow stakeholders to evaluate strategy options for allocating their resources in the field, guiding the implementation of seed system programs and responses. Fixed rather than adaptive deployment of clean seed produced more favorable outcomes in this model, as did prioritization of a higher number of districts through the deployment of smaller volumes of clean seed.SIGNIFICANCEThe decision-support framework presented here can be applied widely to seed systems challenged by the dual goals of distributing seed efficiently and reducing disease risk. Data-driven approaches support evidence-based identification of optimized surveillance and mitigation areas in an iterative fashion, providing guidance early in an epidemic, and revising them as data accrue over time.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3