Affiliation:
1. The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
Abstract
Poplar anthracnose caused by Colletotrichum gloeosporioides is one of the most important diseases widely distributed in poplar-growing areas in China, causing serious economic and ecological losses. In this study, three poplar species showed different resistance to poplar anthracnose: Populus × canadensis was resistant, Populus tomentosa was susceptible, and P. × beijingensis showed intermediate resistance. However, it remains uncertain whether phenolic compounds in poplar are involved in this resistance. Therefore, we determined the concentrations of phenolic compounds and their antifungal activity. Before and after the C. gloeosporioides inoculation, 20 phenolic compounds were detected in P. × canadensis and the number increased from 12 to 14 in P. × beijingensis but decreased from seven to four in P. tomentosa. Thus, phenolic compounds may be positively correlated with the degree of disease resistance. We selected seven phenolic compounds for further analysis, which varied considerably in content after inoculation with C. gloeosporioides. These seven compounds were salicin, arbutin, benzoic acid, salicylic acid, chlorogenic acid, ferulic acid, and naringenin, which helped poplar trees to limit the growth of C. gloeosporioides and differed in their antifungal effects, with phenolic acids having the strongest inhibitory effect. In addition, the optimal concentrations of different substances varied. We demonstrate that these phenolic compounds produced by poplar do play a certain role in the process of poplar resistance to anthracnose. These findings lay a foundation for future research into the antifungal mechanism of poplar trees and may be useful for enhancing the prevention and control of poplar anthracnose.
Funder
Beijing Natural Science Foundation
China Postdoctoral Science Foundation
National Natural Science Foundation of China
National Undergraduate Training Programs for Innovation and Entrepreneurship
Subject
Plant Science,Agronomy and Crop Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献