Amorphophallus muelleri activates ferulic acid and phenylpropane biosynthesis pathways to defend against Fusarium solani infection

Author:

Gao Penghua,Qi Ying,Li Lifang,Yang Shaowu,Liu Jiani,Wei Huanyu,Huang Feiyan,Yu Lei

Abstract

Amorphophallus sp. is an economically important crop for rural revitalization in southwest China. However, Fusarium solani often infects Amorphophallus sp. corms during storage, damaging the corm quality and affecting leaf elongation and flowering in the subsequent crop. In this study, the mechanism of resistance to F. solani was investigated in the leaf bud and flower bud corms of Amorphophallus muelleri through transcriptome and metabolome analyses. A total of 42.52 Gb clean reads and 1,525 metabolites were detected in a total of 12 samples including 3 samples each of disease-free leaf bud corms (LC), leaf bud corms inoculated with F. solani for three days (LD), disease-free flower bud corms (FC), and flower bud corms inoculated with F. solani for three days (FD). Transcriptome, metabolome, and conjoint analyses showed that ‘MAPK signal transduction’, ‘plant-pathogen interaction’, ‘plant hormone signal transduction’, and other secondary metabolite biosynthesis pathways, including ‘phenylpropane biosynthesis’, ‘arachidonic acid metabolism’, ‘stilbene, diarylheptane and gingerolin biosynthesis’, and ‘isoquinoline alkaloids biosynthesis’, among others, were involved in the defense response of A. muelleri to F. solani. Ultimately, the expression of six genes of interest (AmCDPK20, AmRBOH, AmWRKY33, Am4CL, Am POD and AmCYP73A1) was validated by real-time fluorescence quantitative polymerase chain reaction, and the results indicated that these genes were involved in the response of A. muelleri to F. solani. Ferulic acid inhibited the growth of F. solani, reducing the harm caused by F. solani to A. muelleri corms to a certain extent. Overall, this study lays a strong foundation for further investigation of the interaction between A. muelleri and F. solani, and provides a list of genes for the future breeding of F. solani-resistant A. muelleri cultivars.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3