Generation and Dissipation of Methyl Isothiocyanate in Soils Following Metam Sodium Fumigation: Impact on Verticillium Control and Potato Yield

Author:

Triky-Dotan Shachaf1,Austerweil Miriam1,Steiner Bracha1,Peretz-Alon Yitzhak2,Katan Jaacov3,Gamliel Abraham1

Affiliation:

1. Laboratory for Pest Management Research, Institute of Agricultural Engineering, ARO, the Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel

2. Agricultural Committee, Maon Region Enterprises Israel

3. Department of Plant Pathology and Microbiology, the Hebrew University of Jerusalem, Faculty of Agricultural, Food and Environmental Quality Sciences, Rehovot 76100, Israel

Abstract

The fate of methyl isothiocyanate (MITC) was studied in agricultural soils following metam sodium (MS) application in a controlled system and under field conditions as it was related to disease control. Soil samples were collected from 34 field sites in Israel with no history of MS application. The generation and dissipation curves of MITC in these soils, under controlled conditions, varied significantly among the soils, as reflected by the concentration by time (C × T) product. This value was significantly related with the mortality level of Fusarium oxysporum f. sp. radicis-lycopersici as a test organism and sand content of the soils. Seven field experiments were conducted in potato fields from 2001 to 2004. The MS treatments significantly reduced Verticillium wilt incidence and severity in five and four experiments, respectively, out of seven. Combining MS with formalin was more effective for controlling disease than MS alone in most cases. A significant relationship was found between mortality of F. oxysporum f. sp. radicis-lycopersici in soil samples to which MS was applied under controlled conditions and the incidence of Verticillium wilt disease in the field, and between CMITC × T products and the incidence of Verticillium wilt disease in the field. These tests can be used for preplant assessment of potential MS efficacy.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3