Legacy effects of fumigation on soil bacterial and fungal communities and their response to metam sodium application

Author:

Li Xiaoping,Skillman Victoria,Dung Jeremiah,Frost Kenneth

Abstract

Abstract Background Soil microorganisms are integral to maintaining soil health and crop productivity, but fumigation used to suppress soilborne diseases may affect soil microbiota. Currently, little is known about the legacy effects of soil fumigation on soil microbial communities and their response to fumigation at the production scale. Here, 16S rRNA gene and internal transcribed spacer amplicon sequencing was used to characterize the bacterial and fungal communities in soils from intensively managed crop fields with and without previous exposure to metam sodium (MS) fumigation. The effect of fumigation history, soil series, and rotation crop diversity on microbial community variation was estimated and the response of the soil microbiome to MS application in an open microcosm system was documented. Results We found that previous MS fumigation reduced soil bacterial diversity but did not affect microbial richness and fungal diversity. Fumigation history, soil series, and rotation crop diversity were the main contributors to the variation in microbial β-diversity. Between fumigated and non-fumigated soils, predominant bacterial and fungal taxa were similar; however, their relative abundance varied with fumigation history. In particular, the abundance of Basidiomycete yeasts was decreased in fumigated soils. MS fumigation also altered soil bacterial and fungal co-occurrence network structure and associations. In microcosms, application of MS reduced soil microbial richness and bacterial diversity. Soil microbial β-diversity was also affected but microbial communities of the microcosm soils were always similar to that of the field soils used to establish the microcosms. MS application also induced changes in relative abundance of several predominant bacterial and fungal genera based on a soil’s previous fumigation exposure. Conclusions The legacy effects of MS fumigation are more pronounced on soil bacterial diversity, β-diversity and networks. Repeated fumigant applications shift soil microbial compositions and may contribute to differential MS sensitivity among soil microorganisms. Following MS application, microbial richness and bacterial diversity decreases, but microbial β-diversity was similar to that of the field soils used to establish the microcosms in the short-term (< 6 weeks). The responses of soil microbiome to MS fumigation are context dependent and rely on abiotic, biotic, and agricultural management practices.

Funder

National Institute of Food and Agriculture

Oregon Potato Commission

The Northwest Potato Research Consortium

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Applied Microbiology and Biotechnology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3