A Multiplex qPCR Assay for Detection and Quantification of Plasmodiophora brassicae in Soil

Author:

Deora Abhinandan1,Gossen Bruce D.2,Amirsadeghi Sasan1,McDonald Mary Ruth1

Affiliation:

1. Department of Plant Agriculture, University of Guelph, ON N1G 2W1, Canada

2. Agriculture and Agri-Food Canada, Saskatoon Research Centre, SK S7N 0X2, Canada

Abstract

Various physical and chemical factors in soil can inhibit the detection and quantification of soilborne plant pathogens using quantitative polymerase chain reaction (qPCR) assays. A multiplexed TaqMan qPCR assay, including a competitive internal positive control (CIPC), was developed to identify and (where necessary) compensate for inhibition in the quantification of resting spores of Plasmodiophora brassicae from soil. The CIPC amplicon was developed by modifying a sequence coding for green fluorescent protein so that it could be amplified with P. brassicae-specific primers. Addition of CIPC at 5 fg/μl to the singleplex qPCR assay designed to quantify P. brassicae genomic DNA did not reduce the sensitivity, specificity, or reproducibility of the assay. Each of the soil samples, either artificially inoculated or naturally infested with P. brassicae, exhibited no amplification of the CIPC. When the samples were diluted and reassessed, the quantification cycle of the CIPC relative to the control (water only) was delayed in each sample. The magnitude of the delay was used to adjust the estimate of resting spore concentration. The corrected concentration estimates were significantly higher than the unadjusted estimate, which indicated the presence of DNA inhibitors in samples even after dilution. The only exception was a mineral soil sample inoculated with a low concentration (103 spores/g) of resting spores. The assay was optimized for use on a range of soil types. A sample of 0.25 g for mineral soil and 0.10 g for high-organic-matter soil was optimum for recovery of DNA of P. brassicae. The assay represents an improvement over existing assays for estimating resting spore concentration in infested fields.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3