Comparative Transcriptome Analyses Reveal Conserved and Distinct Mechanisms of the SDHI Fungicide Benzovindiflupyr Inhibiting Colletotrichum

Author:

Liang Xiaoyu1,Zou Lijun2,Lian Wenxu2,Wang Meng2,Yang Ye3,Zhang Yu2

Affiliation:

1. Hainan University, 74629, College of Plant Protection, No.58, Renming Road, Haikou, Hainan, China, 570228, ;

2. Hainan University, 74629, College of Plant Protection, Haikou, Hainan, China;

3. Hainan University, 74629, Hainan University, Haikou, Hainan Province, China, Haikou, China, 570288;

Abstract

Colletotrichum leaf disease (CLD) is an annual production concern for commercial growers worldwide. The succinate dehydrogenase inhibitor (SDHI) fungicide benzovindiflupyr shows higher bioactivity against CLD than other SDHIs. However, the mechanism underlying such difference remains unclear. In this study, benzovindiflupyr exhibit good inhibitory activity against C. siamense and C. nymphaeae in vitro and in vivo. To reveal its mechanism for inhibiting Colletotrichum, we compared transcriptomes of C. siamense and C. nymphaeae under treatment with benzovindiflupyr and boscalid. Benzovindiflupyr exhibited higher inhibitory activity against SDH enzyme than boscalid, resulting in a greater reduction in the ATP content of Colletotrichum isolates. Most of the metabolic pathways induced in these fungicide-treated isolates were similar, indicating that benzovindiflupyr exhibited a conserved mechanism of SDHIs inhibiting Colletotrichum. At the same level of suppressive SDH activity, benzovindiflupyr activated more than three times greater gene numbers of Colletotrichum than boscalid, suggesting that benzovindiflupyr could activate distinct mechanisms against Colletotrichum. Especially, membrane-related gene ontology terms, mainly including intrinsic components of membrane, were highly abundant for the benzovindiflupyr-treated isolates rather than boscalid-treated isolates. Only benzovindiflupyr increased the relative conductivities of hyphae, indicating that it could damage the cell membrane and increase of mycelial electrolyte leakage. Thus, we proposed that the high bioactivity of benzovindiflupyr against Colletotrichum by inhibiting SDH activity and damaging the cell membrane at the same time. The research improves our understanding the mode of action of SDHI fungicides against Colletotrichum.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3